国祭交流奖励覚受覚者

21 世紀記念個人冠賞

国際交流奨励賞は若手研究院の国際交流を奨励する目的としており，アジア地区との国際交流を促進し，セラミック スの科学•技術の発展を図ることを目的とする「21 世紀記念個人冠賞」，セラミックスの科学•技術分野に打ける中国 と日本の交流促進を目的とする「日中セラミックス科学•技術交流奨励賞」があり，寄付者の意向を反映して創設され たものです

＜倉田元治賞〉

管原 透 透（秋田大学大学院工学資源学研究科 准教授）

のである
同 23 年に秋田大学に転任後も，核燃料廃裹物固化ガラスなどを中心にガラス融液の研究を続ける予定であり，今後の発展が期待される
略 歴 平成 13 年東京工業大学大学院理工学研究科地球惑星科学専攻博士後期課程修了。同年日本学術振興会特別研究員（学習院大学），同 15 年岡山大学固体地球研究センターCOE 研究員，同 18 年アルバック理工（株）開発部，同 19 年滋賀県立大学工学部助教，同 23 年より秋田大学大学院工学資源学研究科准教授

笑幸 裕介 氏（兵庫県立大学工学部物質系工学専攻 助教）

大幸裕介氏は，高磁場 NMR 分光法や軟 X 線放射光を利用したガラス分相構造の解析と，それに基づく新しい プロトン伝導性ガラスや透明導電性多孔質ガラスなど機能性材料の創製研究に取り組んでいる。特に最近では， $400^{\circ} \mathrm{C}$ 程度の中温領域でプロトン輸率 1 の全く新しいプロトン伝導性ガラスを溶融法で作製することにも成功して いる。中温域で燃料電池発電に適用可能な電解質については，発電効率向上の期待から世界中で研究開発が行われ てきたが，未だ耐久性を備えた電解質は開発されていない。混合アルカリ効果をうまく利用することで，プロトン のみが伝導することを見いだし，ガラス中イオンの拡散挙動に関する新しい知見を得ている。さらに薄膜化するこ とで機械的強度が著しく向上することを明らかにし，中温領域で水素／酸素を用いて発電することも確認した。

このような業績は 60 件を超える学術論文として，国際学会誌に発表しており，将来にわたってもセラミックス，中でもガラス分野の学術および応用に関する研究者として大いに期待でき，本賞受賞に相応しい者であるとして推薦する。
略 歴 平成 15 年名古屋工業大学大学院工学研究科博士前期課程物質系工学専攻修了，同年 NJ 州立 Rutgers 大学留学，同 18 年名古屋工業大学博士後期課程終了。同年豊橋技術科学大学博士研究員，同 20 年より兵庫県立大学工学部助教．

＜井関孝善賞＞

吉田 克己 氏（東京工業大学原子炉工学研究所 助教）

吉田克己氏は，高信頼性耐熱構造材料として航空宇宙分野や環境・エネルギー分野でキーマテリアルとされてい る SiC および $\mathrm{SiCf} / \mathrm{SiC}$ 複合材料に関して系統的な研究を行い，以下の成果を得ている。
（1）ホットプレス法とシート積層法を組み合わせた $\mathrm{SiCf} / \mathrm{SiC}$ 複合材料の新規作製プロセスを開発し，優れた熱的•機械的特性を有する複合材料の作製に成功した。また，低コスト・低環境負荷プロセスとして，電気化学的プロセ スを用いた新規な界面•微構造制御技術について検討し，高性能 $\mathrm{SiCf} / \mathrm{SiC}$ 複合材料の作製プロセスとして電気泳動堆積法の有効性を世界に先駆けて明らかにした。（2）複合材料の界面特性の定量的評価および熱伝導率モデルの構築•解析を行い，複合材料設計指針を導出し，プロセスの最適化を図り，特性の向上を達成した。（3）焼成面での粒成長 を利用したその場粒成長による SiC 多孔体の表面機能付与に関する基礎的研究を行い，特異な構造を有する SiC 多孔体の創製に世界に先駆けて成功した。

このように，同氏の業績は，今後重要になるこの材料の進展に大きく貢献するものであり，井関孝善賞に十分値
するものとして推薦する。
略 歴 平成 13 年東京工業大学大学院理工学研究科原子核工学専攻博士課程修了。同年千葉工業大学工学部工業化学科（同 15 年より生命環境化学科）助手，同 16 年（独）産業技術総合研究所研究員，同 19 年より東京工業大学原子炉工学研究所助教，現在に至る。博士（工学）

