特集 これだけは知ってほしいセラミックスの基礎(1):試料合成から成形・焼成まで

Sintering (1): Fundamentals —An Introduction to Solid-State Sintering and Diffusion— **Key-words**: Sintering, Microstructure evolution, Grain growth, Modelling,

Continuum mechanics

Fumihiro WAKAI and Gaku OKUMA (National Institute of Materials Science)

1. はじめに

空中に漂う2つのシャボン玉が接触すると合体し, 系の全表面積は減少する.これは焼結の原理とよく似 ている.セラミックスや金属の固体粒子でも高温では 原子拡散によって系全体の表面/粒界エネルギーの総 和が減少する方向に粒子の形が変化する.固相焼結と は多数の微小な結晶粒子の成形体に熱を加えて,粒子 間結合の形成,緻密化,粒成長など微構造を変化させ るプロセスのことである.近年,新たな知見が得られ, 焼結理論は少しずつ進歩してきた¹⁾.これを学ぶには 既存の教科書²⁾では不十分である.本記事では固相 焼結と拡散の基礎について,材料組織形成における界 面の動力学の視点³⁾からわかりやすく解説する.なお, 拡散の原理等は教科書³⁾にまとめられている.

2. 焼結の熱力学

単位面積当たりの表面エネルギーを γ_{s} , 粒界エネル ギーを γ_{gb} とする. 表面と粒界を合わせて界面とよぶ. 簡単のため, γ_{s} , γ_{gb} は等方的で一様とする. 全界面 エネルギー E は表面積 A_s と粒界面積 A_{gb} より

 $E = \gamma_s A_s + \gamma_{gb} A_{gb}$ (1) となる. 2つの球粒子が焼結して面積 A_c の小さな接 触部ができると,表面積 $2A_c$ が粒界面積 A_c に変換さ れる.結合形成により全エネルギーが低下する条件は $0 \le \gamma_{gb}/\gamma_s < 2$ である.図1ではN個の球粒子が焼結し て,全エネルギーが最小となった平衡状態を考える. 粒子1個あたりのエネルギーは γ_{gb}/γ_s が低く,粒子数 が多いほど,低下する⁴⁾.N=∞の極限は結晶粒が規 則的に並んだ緻密な焼結体に対応する.

図1の2球粒子焼結で、粒界と表面のなす角度を2 面角 ψ と呼び、 γ_{gb} =2 $\gamma_{s}cos(\psi/2)$ の関係がある.これ は平衡状態で表面に沿って作用する力と粒界に沿って 作用する力との釣り合いから導かれる. γ_{s} , γ_{gb} の値 がわからなくても2面角は実験的に測定可能なので γ_{gb}/γ_s を知ることができる. 2面角が小さく, γ_{gb}/γ_s が 2に近づくと完全な緻密化は熱力学的に不可能となる⁵⁾. ただし, 無加圧焼結で気孔が残留するのは, 熱力学的 な限界より, 動力学的要因のためである場合が多い.

3. 焼結による微構造形成

図2に球粒子の焼結における微構造変化の模式図を 示す⁴⁾. 初期段階(a)では円形の接触部が形成される. 接触部の境界,つまり,粒界が表面と交差する線が表 面3重線である.(b)で接触部が成長し,隣接した接 触部に連結すると,開気孔チャネルが閉鎖する.この とき,3つの粒界が交差して粒界3重線が形成される. 接触部は表面3重線と粒界3重線に囲まれた形状とな る.複雑な微構造変化は,拡散による粒子形状変化と 粒子間距離の収縮の結果として起こる.

焼結における粒子充填構造と気孔チャネル形状を 図3に示す⁶⁾.(a)は球粒子の配置,(b)は配置構造の 結合ネットワークモデルを示す.点はそれぞれの粒子

図1 焼結による1粒子当たりの界面エネルギーの低下⁴⁾ $\Delta E^* = (E - NE_0)/(NE_0)$. E_0 は球粒子1個の全表面エネルギー.

図2 多粒子焼結における微構造変化⁴⁾. (a)初期, (b)中期 段階.

図3 球粒子の充填構造と気孔チャネル⁶⁾. (a)球粒子充填 構造, (b)結合ネットワークモデル, (c)-(f)気孔チャ ネル. 図中の数値は相対密度を表す. ガラス球の粘性 焼結の例を示す.

中心を表す.2つの点を結ぶ直線は粒子間に結合が形 成されていることを示す.これらの点と直線から構成 される多角形を面と呼ぶ.これらの面から区画される 3D 空間をセルと呼ぶ.セルの内側の空隙は終期段階 で閉気孔となる.(c)-(f)に気孔の3次元構造を示す. (c)の矢印で示した細長い構造は3粒子で囲まれた気 孔チャネルである.(d)の赤線で囲まれた領域は,気 孔チャネルの断面を示す.断面形状は(b)の多角形の 面に対応する.(a)で緑色と赤の5個の粒子で囲まれ た気孔チャネルの断面は(d)では5角形である.気孔チャ ネルの太さは次第に減少し,くびれてちぎれる(ピン チオフ).

Coble⁷⁰は初期,中期,終期段階に対応する周期的 構造モデルを提案した.しかし,現実は全く異なって いる.粒子充填構造は不均質,不規則であり,焼結中 には新たな結合の形成,さまざまな大きさ,形状の気 孔チャネルのピンチオフ,閉気孔の形成・収縮・消失 が同時に起こる.Okumaら⁶⁰は,気孔ネットワーク のトポロジーを表現するオイラー標数の解析に基づき, 新たな結合形成が主となる領域を初期段階,気孔チャ ネルの閉鎖が主となる領域を中期段階,閉気孔の収縮 が主となる領域を終期段階と定義することを提唱した.

4. 拡散経路(非緻密化/緻密化機構)

粒子表面の原子の化学ポテンシャルは表面曲率に依存する.曲率の違いにより,高温で原子拡散がおこる. 焼結において表面から表面への原子拡散経路を図4に 示した⁴⁾.原子は表面拡散により粒子の球面から,接 触部のくびれ(ネック)に向かって拡散する.結晶粒 内部では,原子は空孔や格子間を経由して体拡散する. 空孔の運動は原子運動と逆方向である.表面から蒸発 した原子は気相拡散してネック部で凝縮する.これら の拡散経路により粒子形状は変化する.しかし,粒子

図4 表面から表面への原子拡散経路⁴⁾. 実線は原子拡散, 点線は空孔拡散を示す.

 図5 焼結における粒子の剛体運動⁴⁾. (a)初期, (b)空孔の 粒界への拡散, (c)空孔消滅による剛体運動.

位置は変化しないので非緻密化機構と呼ばれる^{8),9)}.

図5に示すように、ネック表面近くで生成した空孔 は粒界拡散あるいは体拡散で粒界に向かって動く.粒 界は空孔の生成源/消滅先として働く¹⁰⁾.粒界で空 孔が消滅することにより、粒子間の相互運動、剛体運 動が起こる.図5(a),(b),(c)を比較すると、粒子 が格子間距離に相当する分だけ運動したことがわかる. 緻密化は剛体運動により粒子間距離が収縮することで 起きる.これは緻密化機構と呼ばれる^{8,9}.

5. 表面運動

図4の原子拡散経路による粒子形状の変化は表面運動として記述できる³⁾.例えば,蒸発/凝縮機構で原子が蒸発すると,その表面位置は内側に移動し,気体原子がネック部分で凝縮すると表面は外側に動く. 図6に表面運動による粒子形状変化を示した.実線は表面の法線速度ベクトルを表す.速度ベクトルはネック部分では外向きであるので,ネック成長が起こる. 蒸発/凝縮機構

曲率 κ = 1/r₁+1/r₂ は表面の主曲率半径 r₁ と r₂ から 定義される.本解説では球状の気孔表面の曲率の符号 を正,球粒子表面の曲率を負と定義する.湾曲した表 面の平衡蒸気圧は Kelvin 方程式で与えられる.密閉

図6 表面運動による粒子形状変化⁴⁾. (a) $t^* = 0.016$, (b) $t^* = 0.066$, (c) $t^* = 0.45$. 蒸発/凝縮機構 $\gamma_{ob}/\gamma_s = 0.5$.

された空間で粒子体積が保存される場合,気相中の蒸気圧は $\gamma_s \bar{\kappa}$ に比例する. $\bar{\kappa}$ は粒子表面全体の曲率の平均である.凝縮速度は Langmuir 方程式に従い,気相中の蒸気圧と表面の平衡蒸気圧との差に比例する¹¹⁾.蒸発/凝縮による表面速度vは次式で与えられる¹²⁾.

 $\upsilon = M_s \gamma_s (\kappa - \bar{\kappa})$ (2) M_s は表面移動度である. 図4の法線速度ベクトルは $\kappa - \bar{\kappa}$ の分布の時間変化を示している. 粒子の中央部に ある黒点は重心位置を示す. 剛体運動の起こらない非 緻密化機構でも,形状変化の結果,粒子の重心位置は 移動する. 重心間距離は時間とともに減少する. 表面拡散

表面運動は表面拡散によっても起こる. 湾曲した表面上の原子の化学ポテンシャルは曲率に比例する.

$$j_s = -\frac{\delta D_s}{kT\Omega} \nabla_s \mu = \frac{\gamma_s \delta D_s}{kT} \nabla_s \kappa \tag{4}$$

kは Boltzmann 定数, Tは絶対温度, δD_s は表面拡散 係数と表面厚みの積, ∇_s は表面勾配である.表面の 法線速度は流束の発散と Ω の積である.表面拡散に よる表面運動の式は Mullins¹³⁾ により提案された.

$$\upsilon = -\frac{\gamma_s \Omega \delta D_s}{kT} \nabla_s^2 \kappa \tag{5}$$

表面拡散による表面運動は粒子体積を一定に保ちつつ, 全表面積を減少させる¹⁴⁾.

6. スケーリング則と無次元化時間

固相焼結においては表面拡散, 粒界拡散, 体拡散, 蒸発-凝縮機構が同時に働く. 拡散機構の重要性は温 度と粒子径に応じて変化する. もし, ある単一の拡散 機構が焼結の全段階を通じて重要ならば, 焼結によっ てある形状に到達するのに要する時間 t は初期粒子半 径 r₀のべき乗(rⁿ)に比例して増加する. これは Herring のスケーリング則と呼ばれる¹⁵⁾. 指数 n は表 面拡散と粒界拡散では 4,体拡散では 3,蒸発 – 凝縮 では 2 である.

蒸発/凝縮の表面速度(2)式と表面拡散の表面速度(5) 式は無次元化時間 t*を導入し無次元化できる.

$$t^* = \frac{\gamma_s \mathbf{M}_s}{r_0^2} t \qquad (\mathbf{\bar{X}}\mathbf{\bar{X}} - \mathbf{\bar{\chi}}\mathbf{\bar{m}}) \tag{6}$$

$$t^* = \frac{\gamma_s \Omega \delta D_s}{k T r_0^4} t \qquad (\mathrm{amig}) \tag{7}$$

緻密化機構で粒子の剛体運動を表す運動方程式は次 節で説明するが、無次元化時間は以下のようになる。

$$t^* = \frac{\gamma_s \delta D_{gb} \Omega}{k T r_0^4} t \qquad ($$
 (粒界拡散) (8)

$$t^* = \frac{\gamma_s D_b \Omega}{k T r_0^3} t \qquad (\&tap) \tag{9}$$

ここで、 δD_{gb} は粒界拡散係数と粒界厚みの積、 D_b は体拡散係数である。

焼結シミュレーションの結果は無次元化時間で表す と便利である. 任意の γ_s , δD_s , r_0 等の組み合わせに 対して, ある形状に到達するまでに必要な時間 t は, 無次元化時間 t^* をもとにそれらの数値を代入すれば 容易に計算できるからである. (6)-(9)式より各々の 拡散機構に対応するスケーリング則の指数が Herring の解析と一致することがわかる¹⁶⁾. また, γ_s , δD_s な どの値が大きいほど, 焼結が短時間で進むことも自明 である.

7. 粒子の剛体運動の運動方程式

緻密化プロセスのうち, 粒界拡散は微細粒子を比較 的低温で焼結する場合に, また, 体拡散は粗大粒子を 高温で焼結する場合に重要となる⁹⁾.体拡散と粒界拡 散の活性化エネルギーを Q_b と Q_{gb} とすると Q_b>Q_{gb} であることが温度依存性の, また, スケーリング則の 指数が異なることが粒径依存性の理由である.本解説 では, 粒界拡散による焼結における粒子の剛体運動を 例にとって, その原理を説明する.

焼結における力の釣り合いを考えるため、まずシャ ボン玉の話をする.シャボン玉内部の気体には圧力が かかっていて、表面張力と釣り合っている.2つのシャ ボン玉が合体した境界の膜には気体の圧力のため圧縮 力が働く.同様に、固体の2球粒子の焼結においても 接触面には圧縮の力がかかっている.これは Johnson¹⁷⁾によって指摘された.力の釣り合いを考え ると、接触面 *A*_cに作用する力は表面3重線に沿った 表面張力の線績分に等しい^{17).18)}.

$$F_c \equiv \int_A \sigma_n dS = -\gamma_s Lsin(\psi / 2) \tag{10}$$

L=2πc は接触部の円周, c は接触半径である.

粒界拡散は接触面内に応力分布が存在するために起こる. なぜなら粒界上の原子の化学ポテンシャル μ は 粒界に作用する応力 σ_n に応じて変化するからである¹⁰.

$$\mu = \mu_0 - \sigma_n \Omega \tag{11}$$

応力の符号は引張りが正,圧縮が負である. 粒界に沿った拡散流束は化学ポテンシャルの勾配に比例する.

$$j_{gb} = \frac{\delta D_{gb}}{kT\Omega} \nabla_s \sigma_n \tag{12}$$

2粒子間の相対速度 \dot{u} は拡散流束の発散に Ω をかけた ものとなる. 粒界に働く圧縮応力 σ_n の分布はPoisson 方程式の解として求められる.

$$\nabla_s^2 \sigma_n = -\frac{kT}{\Omega \delta D_{gb}} \dot{u} \tag{13}$$

一方, 粒界の応力は表面3重線近くではネック表面の 曲率 κ_{neck} による応力に一致する.

$$\sigma_n = \gamma_s \kappa_{neck} \tag{14}$$

(13) 式を(10), (14) 式の条件のもとで解くと、2
粒子間の相対速度は次式で与えられる^{14),19)}.

$$\dot{u} = -\frac{8\Omega\delta D_{gb}}{kT\pi c^4} F^s \tag{15}$$

剛体運動速度は粒界拡散係数と収縮の熱力学的駆動力 である焼結力 F^{*}に比例する.焼結力は次式で表される.

 $F^{s} = \gamma_{s}\kappa_{neck}A_{c} - F_{c} = \gamma_{s}\kappa_{neck}A_{c} + \gamma_{s}Lsin(\psi/2)$ (16) ここで、 $A_{c} = \pi c^{2}$ は接触部の面積である。 F^{s}/A_{c} から、 焼結力の起源はネック表面の化学ポテンシャルと接触 部の平均化学ポテンシャルとの差である。重要なこと は、接触半径とネック表面の曲率さえ分かれば、2粒 子間に作用する焼結力と粒子間の相対運動速度を計算 できることである。つまり、SEM やナノトモグラフィー で焼結中の微視的構造を把握すれば、その背後にある 熱力学的駆動力と粒子運動を予測できる。

2粒子の接触部に力 *F_n* が作用するとき, 粒子間の 相対速度は次式で表される.

$$\dot{u} = -\frac{8\Omega\delta D_{gb}}{kT\pi c^4} \left(F^s - F_n\right) \tag{17}$$

F_nは周囲の粒子との相互作用,加圧焼結の場合は外力によって生じる.この重ね合わせの原理から焼結力のもう一つの定義が導かれる.すなわち,焼結力とは収縮を停止するために必要な外力(引張り)に等しい.

焼結の運動方程式は多粒子が相互作用する状況でも 成立する.図2(b)のように表面3重線と粒界3重線 で囲まれた接触面を考える.接触面の両側の2粒子間 の相対速度と焼結力は以下のようになる¹⁸⁾.

$$\dot{u} = -\frac{\Omega \delta D_{gb}}{kTg^* A_c^2} F^s \tag{18}$$

$$F^{s} = \gamma_{s} \kappa^{*} A_{c} + \gamma_{s} L_{c} sin\left(\frac{\psi}{2}\right) + \frac{1}{3} \gamma_{gb} L_{t} sin\left(\frac{\pi}{3}\right) \quad (19)$$

ここで、 g^* は形状係数、 κ^* は表面3重線近傍の平均 的な曲率、 L_c は表面3重線長さ、 L_t は粒界3重線長 さである。(19)式の右辺第3項の係数1/3は粒界3 重線が3つの粒界に共有されているからである。

(17) 式は個別要素法(Discrete element method, DEM) による大規模焼結シミュレーションの理論的 な基礎となる. DEM 法では球粒子を想定し, 簡略化 した焼結力を仮定して,(17) 式にもとづき膨大な数 の粒子の相互作用による粒子運動を解析する. 基板上 の薄膜の拘束焼結における内部応力の解析等ができ る²⁰⁾.

8. 粒子スケールの焼結

焼結の初期段階では粒子間の結合の形成と接触半径の拡大,中期段階では気孔チャネルの閉鎖,終期段階では閉気孔の形成・収縮・消失が起こる.粒子スケールでの基本的な焼結プロセスは、2球粒子モデル(結合形成とネック成長)¹⁴⁾,3球粒子モデル(気孔チャネルの閉鎖)¹⁸⁾,4球粒子モデル(閉気孔の形成・収縮・ 消失)¹⁸⁾を解析すれば理解できる.

焼結の古典論によれば、2球焼結モデルにおける初 期段階での接触半径の成長はべき乗則で表される²⁾.

$$(cr_0)^m = \beta t$$
 (20)
指数 m は蒸発/凝縮機構 ¹¹⁾ では 3,表面拡散では 6,
粒界拡散 ⁸⁾ では 6 体拡散では 4 である

本節では、粒界拡散と表面拡散の連成の場合の焼結 挙動を厳密に解析し、古典論と比較する.接触面から 粒界拡散によりネック表面に出てきた原子は表面拡散 によって再配分される. 粒界拡散機構では必ず表面拡 散が必要である⁹⁾.シミュレーションは粒界拡散によ る剛体運動と表面拡散による表面運動を同時に組み合 わせて行う.そのため、基準となる無次元化時間とし て表面拡散係数にもとづく(7)式を使う.粒界拡散に よる影響は $\delta D_{gb}/\delta D_s$ に応じて変化する. 図7に接触 面積から定義した有効接触半径 $c^* = \sqrt{A_c/\pi}$ を無次元 化時間 t^* の関数として表す.有効接触半径を導入す ることにより、接触面が円形ではない場合にも拡張で きる.

初期段階 ($c^*/r_0 < 0.3$) での接触半径の成長はべき 乗則で近似できる. 図7の曲線の勾配が指数 m に対 応する. 粒界拡散と表面拡散の連成では $0 \le \delta D_{eb}/\delta D_s$

≤1の範囲で近似的に次式が成立する¹⁸⁾

$$\left(\frac{c}{r_{\rm o}}\right)^6 = A \frac{\gamma_s \Omega}{k T r_{\rm o}^4} \left(\delta D_s + B \delta D_{gb}\right) t \tag{21}$$

剛体運動による収縮速度が δD_{gb} のみに比例するのに 対し,ネック成長は $\delta D_{gb}/\delta D_s = 0$ でも起こる.ただし, 係数 B の値は 15 ~ 20 であり, 粒界拡散は表面拡散 に比べてネック成長を効率的に促進する. $\delta D_{gb}/\delta D_s >$ 2 では粒界から拡散して表面に到達した原子を表面拡 散で運び去ることが間に合わなくなる.堆積した原子 はネックの曲率を変化させ, 焼結力が低下する.この ため(21)式の予測式よりもネック成長は遅くなる.

剛体運動による収縮速度は焼結力と接触面積から決 定できる.そこで,接触面積にもとづく有効接触半径 を焼結の状態変数として使う.焼結力と有効接触半径 との関係を図8に示す.図中の白丸は3球粒子,4球 粒子モデルで気孔チャネルが閉鎖する時点を示す.気 孔チャネルの閉鎖は $c^*/r_0=0.5$ 前後で起こる.このと き,4球粒子モデルでは閉気孔が形成される.閉気孔 が収縮して消失した時点を×印で示す.2球粒子モデ ルの焼結力は $c^*/r_0=0.2$ で幅の広いピークを示す.3 球粒子、4球粒子モデルでは気孔チャネルが閉鎖する 前後と,閉気孔が消失する直前に鋭いピークが現れる. 局所的な曲率が非常に大きくなるためである.

初期段階で焼結力が幅の広いピークをもつ領域では 焼結力はほぼ一定とみなせる.2球粒子焼結の古典論 ではネック曲率と接触半径の関係($\kappa_{neck} \approx 4r_0/c^2$)を 仮定する^{8).11)}.これは(15)式で F^s を定数とみなす ことに対応する.べき乗則はこの仮定にもとづく近似 にすぎない.図7の曲線の勾配が実際には微妙に変化 するのは、焼結力(図8)がネック成長とともに変化

図8 焼結力と有効接触半径との関係¹⁸⁾.

するためである. なお, 終期段階では焼結力がしだい に低下し, ゼロになったところで収縮は停止する.

3 球粒子モデルで気孔チャネルが閉鎖するまでの時間は $\delta D_{gb}/\delta D_s$ に影響されるが,(21)式で有効接触半径が $c^*/r_0=0.5$ に到達する時間として予測できる.

4 球粒子モデルで閉気孔が形成されてから, 消失するまでに要する時間は δD_{gb} に反比例する. 粒子が相対運動すると閉気孔体積が減少すると同時に, 粒界から押し出された原子が閉気孔を埋めるからである. $\delta D_{gb}/\delta D_{s}=0$ の場合, 閉気孔は収縮できず, 残留する.

9. 巨視的な焼結の連続体力学

ミクロスケールでの焼結中の組織変化は複雑かつ不 規則,不均質である.しかし,巨視的には焼結現象を 均質な連続体の高温変形として取り扱うことができる. 連続体力学の基礎となるのが、図9²¹⁾に示す代表体 積要素 (Representative Volume Element, RVE) の 概念である。RVE とは不均質な材料の体積要素でミ クロスケールの特徴を表す十分な量の情報を含むほど 大きく,かつ,巨視的な部材よりは十分小さいものを 指す. RVE は粒子スケールでの不均一性と、相対密度. 収縮速度、内部応力等の巨視的な量をつなぐ概念であ る. このようなスケールに基づく区分はマイクロ-メゾーマクロ原理と呼ばれる. RVE 寸法は対象とす る物性に応じて異なる.近年,X線CT観察による局 所的な相対密度の空間分布のゆらぎの解析から RVE 寸法は粒子直径d₀の10倍程度であることがわかっ t^{22} .

固体材料に高温で応力を加えると変形する.ここで 微視的な応力と区別するために RVE 寸法レベルで定 義された巨視的な応力を Σ_{ij}, ひずみ速度を E_{ij} と表記

図9 基板上の薄膜の拘束焼結でのミクロ,メゾ,マクロ構造²¹⁾.

する.等方組織に対する構成方程式を以下に示す¹⁹⁾.

$$\dot{\mathbf{E}}_{ij} = \frac{\Sigma'_{ij}}{2G} + \delta_{ij} \frac{\Sigma_m - \Sigma^s}{3K}$$
(22)

右辺第1項は偏差応力 $\Sigma'_{ij} = \Sigma_{ij} - \delta_{ij}\Sigma_m$ によるせん断変 形であり,体積は変化しない.第2項が体積変化を表 す. δ_{ij} はクロネッカーのデルタである. Σ_m は静水圧 応力,比例係数の $G \ge K$ をそれぞれせん断粘性率, 体積粘性率と呼ぶ. Σ が焼結応力であり,焼結にお ける体積収縮の駆動力である.焼結圧力とも呼ばれる ため,符号は圧力と同様に圧縮を正とする.緻密化速 度はひずみ速度テンソルの対角和で与えられる.

 $\dot{\rho} / \rho = (\Sigma^{s} - \Sigma_{m}) / K$ (23) ρ は相対密度である.焼結応力により自発的な緻密化 が進む.圧縮の静水圧応力(符号は負)を加えて緻密 化を促進することが熱間静水圧プレス(HIP)など加 圧焼結の原理である.一方,基板上の薄膜の拘束焼結 や積層材料の同時焼成における速度差焼結において引 張りの内部応力が生じる場合には,緻密化は阻害され る.

焼結応力, せん断, 体積粘性率は焼結鍛造試験で測 定できる²³⁾.実験的, 理論的に得られた値を相対密 度の関数として表わせば, (22)式をもとに不均質な 粒子充填密度をもつ成形体の複雑な収縮挙動の有限要 素法シミュレーションができる²⁴⁾. (23)式を時間で 積分すれば, 相対密度の時間変化を表す緻密化曲線が 得られる. 緻密化曲線に及ぼす加圧焼結の効果, 加圧 焼結における粗大気孔の変形と収縮などを解析でき る²⁵⁾.

10. ミクロ構造と巨視的挙動との関係

粒子スケールのミクロ構造をもとに巨視的な緻密化 挙動を理解する試みは、1960年代に Coble⁷⁾ が簡単な

 図10 平衡気孔構造モデル.(a)エネルギー法²⁷⁾. Cobleの モデルは b.c.c., Z=14 に対応する.平衡形状の気孔 は円筒状ではない.(b)焼結力法²⁹⁾. 組織異方性が ある場合,粘性テンソルは接触面積の違いに影響される³⁰⁾.

周期構造モデルを提案したことに始まる.彼は中期段 階の構造として,結晶粒の粒界3重線に沿った円筒状 気孔を考えた.しかし,この気孔形状は熱力学的に不 安定で実際には存在できない.

80年代から90年代になると、より現実的なモデル として、気孔率を一定とした拘束条件のもとで表面/ 粒界エネルギーの総和を最小とする安定な平衡気孔構 造が提案された(図10). Riedel, Zipse, Svoboda¹⁹⁾は 粒子が規則的に立方対称に配列した平衡気孔構造モデ ルを解析し、連続体力学とミクロ構造との関係を解明 した.

平衡気孔構造モデルの利点は、エネルギー論による 平衡熱力学的な手法で定義した焼結応力と、接触面に 作用する焼結力にもとづく動力学的な手法とが厳密に 一致することである^{26).27)}.平衡熱力学では系の自由 エネルギー変化 δE は圧力 P と体積変化 δV に比例す る ($\delta E = P\delta V$). 圧力に対応するのが焼結応力である.

 $\Sigma^{s} = \delta E/\delta V$ (エネルギー法) (24) δE は表面エネルギーと粒界エネルギーの総和((1)式) の変化である.図10(a)のエネルギー曲線の勾配が焼 結応力である.また、仮想仕事の原理 $\delta W = F\delta u$ と $\delta E = \delta W$ より、焼結力 F^{s} と切断面の面積 A_{p} から定 義できる.

 $\Sigma^{s} = F^{s} / A_{p}$ (焼結力法) (25) 図 10(b)で気孔部分を含む面積 A_{p} で定義するのは、 変 位 δu による 体積 変 化 が $\delta V = A_{p} \delta u$ だ からで あ る ²⁷⁾.焼結力法の利点は平衡状態だけでなく、非平 衡プロセスに対しても適用できる点にある.また、 図 10 より、異方的な構造の場合、焼結応力に異方性 が生じることも容易に理解できる.焼結応力は γ_{s} / r_{0} に比例し、相対密度だけでなく、 γ_{sb} / γ_{s} や粒子配位数 Z(単純立方で6, b.c.c. で8または14, f.c.c. で12) に応じて変化する²⁶⁾.

基板上の薄膜の拘束焼結や積層材料の速度差焼結で は内部応力のために組織が異方的になる.また,ホッ トプレスや放電プラズマ焼結(SPS)によっても異方 的組織が生じる.組織異方性は粉体成形プロセスでの プレス成形やテープキャスト法の際にも生じる.この ため,連続体力学を異方性組織に拡張し,異方的収縮 の解析が求められる²⁸⁾.

異方的な組織に対して焼結の構成方程式を一般化す ると以下のように表される^{19).29).30)}.

$$\Sigma_{ij} = \Sigma_{ij}^s + C_{ijkl} \dot{\mathbf{E}}_{kl} \tag{26}$$

ここで同じ項で添字が重なる場合はその添字について 和をとる Einstein の規約を用いる. Σ⁶*ij* は焼結応力テ ンソル, *C_{ijkl}* は粘性テンソルである. 異方的な平衡気 孔構造モデル (図 10(b))をもとに, 焼結応力テンソ ル²⁹⁾ や粘性テンソル³⁰⁾を厳密に定義し, 拘束焼結等 による異方的組織形成を予測できる³¹⁾. 4 階の粘性テ ンソルの独立な成分の数は直方晶系で9個, 正方対称 で6個, 立方対称で3個, 等方的な場合で2個である.

立方対称構造をもとにすべての可能な方向に対して 平均化して、ランダムな等方組織に対する K と G を 計算できる^{19),32)}. K, G は kTr³ / ΩδD_{gb} に比例し、 相対密度とともに数桁にわたって増加する. 特に, K は接触面積が拡大すると、著しく増加する. 同じ相対 密度でも、粒界すべりがおこりやすいと G/K は低下 する³²⁾. 完全に緻密化すると K は無限大となるが、 G は有限にとどまる. そのため緻密な焼結体でも外 力が作用すると粒界拡散クリープによるせん断変形が 起こる. 加圧焼結の終期段階での欠陥除去のためには、 微細粒径を維持して、せん断粘性率を低くすることが 有利である²⁵⁾.

11. 粒成長と粗大化

2つの同じ大きさの球粒子が焼結すると、図1に示 した平衡形状に到達する.実際には、これは熱力学的 に不安定である.もし、2つの粒子の大きさがわずか でも異なれば、小さい方の粒子は収縮しはじめ、つい には消失する.残ったひとつの粗大化した球粒子が究 極の安定状態である³³⁾.粒子の体積は焼結中の表面 運動と粒界運動により変化する.粒子粗大化は蒸発-凝縮、表面拡散による表面運動で起こる.一方、粒成 長は曲率に駆動された粒界運動により起こる.

高温での焼結プロセスにより相対密度 ρ と平均粒径 d は時間とともに増加する. ρ-d 位相空間中の経路, つまり,相対密度の増加とともに粒成長が起こる挙動

図12 大きさの異なる2つの粒子の焼結における粒界のピン止め条件³³⁾.

を焼結軌跡 (sintering trajectory) と呼ぶ³⁴⁾. 例を 図 11 に示した²³⁾. 曲線の勾配は相対密度が 90%程度 までは比較的緩やかであるが, 90%を越えると急勾配 になる.

焼結軌跡を理解するため、まず、粒成長の原理について説明する。緻密な多結晶材料の粒成長は、高温で 粒界エネルギーの総和を低下する方向に粒界が移動す ることで起こる。粒界移動速度は粒界エネルギーと粒 界の曲率の積に比例する³⁵⁾.

 $v = M_{gb} \gamma_{gb} \kappa$ (27) M_{gb} は粒界の移動度である. 粒界を横切る原子のジャ ンプにより粒界移動が起こる. 原子の長距離拡散は不 要であるので, 粒界移動度は高い. 粒界移動の結果, 統計的に小さな結晶粒が収縮, 消滅し, 残った結晶粒 の平均粒径が増加する. 仮にすべての結晶粒の粒径が 同一である組織から出発しても, しだいに粒径分布が 広がり, 粒径分布がある自己相似形状を保つ正常粒成 長領域に到達する³⁶⁾. 正常粒成長領域では平均粒径 は2乗則にしたがって時間と共に増加する.

$$d^2 - d_0^2 = at \tag{28}$$

aは係数, d_0 はt=0における平均粒径である.

図12に大きさの異なる2つの粒子の焼結の模式図 を示した³³⁾.2粒子の境界の直線は表面3重線である. 大きな粒子は半透明で、内部の湾曲した粒界が見える. 湾曲した粒界が表面3重線の位置から右に進もうとす ると、粒界面積が増える.このエネルギー障壁のため、 粒界は表面3重線の位置から動けずピン止めされ る^{37),38)}.表面3重線の運動は遅い表面運動に律速さ れる.このため、粒界移動速度は遅くなる.粒界をピ ン止めする条件は図中の角度が*θ*>0であることであ る³³⁾.*θ*<0になると粒界は3重線の位置から解放され、 図中の破線のように小さい粒子の中を通り過ぎる.

図11の焼結軌跡の原因は以下のように説明できる³⁴⁾.初期段階(図2(a))では表面3重線近傍のネッ ク構造自体が粒界移動を抑制する.中期段階では気孔 チャネルのせいで粒界移動は抑制される.中期段階は 気孔チャネルが次々とピンチオフすることにより,表 面3重線が粒界3重線に変換されるプロセスである⁴⁾. 相対密度が90%を越えた終期段階では気孔チャネル がほぼ消失し,閉気孔が残留する.小さな閉気孔はピ ン止め効果が低く粒界に引きずられて移動しやすい. 粒成長に伴い,移動する閉気孔が互いに合体すると, 気孔粗大化が起こる.閉気孔の数が少なくなるにつれ, 粒成長はさらに加速される.なお,閉気孔が粒界から 分離し,結晶粒内に取り残されることもある³⁹⁾.体 拡散は遅いので残留した粒内気孔の除去は困難である.

12. おわりに

焼結理論の目標は、原料、成形体中の粒子充填構造、 焼結条件をもとに相対密度、微構造、欠陥、部材形状 がどのように変化するかを理解し、予測と制御を行う ことにある.まだまだ課題は多く、解決が望まれる.

謝辞本解説は長年考えてきたことを整理したものです. このような機会を与えていただいた特集号編集委員の方々に深く感謝致します.

文 献

- R. K. Bordia, S.-J. L. Kang and E. A. Olevsky, J. Am. Ceram. Soc., 100, 2314 (2017).
- S.-J. L. Kang, "Sintering", Elsevier Butterworth-Heinemann, 2005.
- R. W. Balluffi, S. M. Allen and W. C. Carter, "Kinetics of Materials", John Wiley & Sons, Hoboken, NJ, 2005.
- 4) F. Wakai, J. Am. Ceram. Soc., 89, 1471 (2006).
- 5) B. J. Kellett and F. F. Lange, J. Am. Ceram. Soc., 72, 725 (1989).
- G. Okuma, D. Kadowaki, T. Hondo, S. Tanaka and F. Wakai, *Sci. Rep.*, 7, 11106 (2017).
- 7) R. L. Coble, J. Appl. Phys., 32, 787 (1961).
- 8) R. L. Coble, J. Am. Ceram. Soc., 41, 55 (1958).
- 9) F. B. Swinkels and M. F. Ashby, Acta Metall., 29, 259 (1981).
- 10) C. Herring, J. Appl. Phys., 21, 437 (1950).
- 11) W. D. Kingery and M. Berg, J. Appl. Phys., 26, 1205 (1955).

- 12) F. Wakai and F. Aldinger, Acta Mater., 51, 4013 (2003).
- 13) W. W. Mullins, J. Appl. Phys., 28, 333 (1957).
- 14) F. Wakai and K. A. Brakke, Acta Mater., 59, 5379 (2011).
- 15) C. Herring, J. Appl. Phys., 21, 301 (1950).
- F. Wakai, T. Akatsu and Y. Shinoda, Acta Mater., 54, 793 (2006).
- 17) D. L. Johnson, J. Appl. Phys., 40, 192 (1969).
- 18) F. Wakai and G. Okuma, Acta Mater., 235, 118092 (2022).
- H. Riedel, H. Zipse and J. Svoboda, *Acta Metall. Mater.*, 42, 445 (1994).
- 20) C. L. Martin and R. K. Bordia, Acta Mater., 57, 549 (2009).
- 21) G. Okuma and F. Wakai, J. Am. Ceram. Soc., DOI:10.1111/ jace.19366
- 22) G. Okuma, D. Kadowaki, Y. Shinoda, T. Akatsu, O. Guillon and F. Wakai, J. Ceram. Soc. Japan, 124, 421 (2016).
- 23) R. Zuo, E. Aulbach and J. Rödel, Acta Mater., 51, 4563 (2003).
- 24) T. Kraft and H. Riedel, J. Eur. Ceram. Soc., 24, 345 (2004).
- 25) F. Wakai, G. Okuma, R. Mücke and O. Guillon, J. Eur. Ceram. Soc., 41, 202 (2021); ibid. 43, 7721 (2023).
- 26) J. Svoboda, H. Riedel and H. Zipse, Acta Metall. Mater., 42, 435 (1994).
- 27) F. Wakai, Y. Shinoda and T. Akatsu, Acta Mater., 52, 5621 (2004).
- 28) D. J. Green, O. Guillon and J. Rödel, J. Eur. Ceram. Soc., 28, 1451 (2008).
- 29) F. Wakai and Y. Shinoda, Acta Mater., 57, 3955 (2009).
- 30) F. Wakai and T. Akatsu, Acta Mater., 58, 1921 (2010).
- 31) F. Wakai and R. K. Bordia, J. Am. Ceram. Soc., 95, 2389 (2012).
- 32) F. Wakai and Z. S. Nikolić, Acta Mater., 59, 774 (2011).
- 33) F. Wakai, M. Yoshida, Y. Shinoda and T. Akatsu, Acta Mater., 53, 1361 (2005).
- 34) J. Kanters, U. Eisele and J. Rödel, Acta Mater., 48, 1239 (2000).
- 35) J. E. Burke and D. Turnbull, Prog. Metal. Phys., 3, 220 (1952).
- 36) F. Wakai, N. Enomoto and H. Ogawa, Acta Mater., 48, 1297 (2000).
- 37) W. W. Mullins, Acta Metall., 6, 414 (1958).
- 38) F. F. Lange and B. J. Kellett, J. Am. Ceram. Soc., 72, 735 (1989).
- 39) R. J. Brook, J. Am. Ceram. Soc., 52, 56 (1969).

筆者紹介

若井 史博(わかい ふみひろ)
東京工業大学、名誉教授、現在、物質・材料研
究機構、構造材料研究センター、セラミックス基
複合材料グループ、特別研究員.
[連絡先] 〒 305-0047 茨城県つくば市千現
1-2-1 物質・材料研究機構

E-mail : WAKAI.Fumihiro@nims.go.jp, wakai. fumihiro@gmail.com

大熊 学(おおくま がく)

2018年9月東京工業大学物質理工学院材料系 材料コース早期修了.博士(工学).東京工業大 学科学技術創成研究院フロンティア材料研究所特 任助教を経て、物質・材料研究機構,構造材料研 究センター,セラミックス基複合材料グループ, 主任研究員.

[連絡先] 〒 305-0047 茨城県つくば市千現
1-2-1 物質・材料研究機構
E-mail: OKUMA.Gaku@nims.go,jp

